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Abstract. We study the one-dimensional partially asymmetric simple exclusion process (ASEP)
with open boundaries, that describes a system of hard-core particles hopping stochastically on
a chain coupled to reservoirs at both ends. Derrida and coworkers showed in 1993 that the
stationary probability distribution of this model can be represented as a trace on a quadratic
algebra, closely related to the deformed oscillator-algebra. We constructall finite-dimensional
irreducible representations of this algebra. This enables us to compute the stationary bulk density
as well as all correlation lengths for the ASEP on a set of special curves of the phase diagram.

1. Introduction

The one-dimensional asymmetric simple exclusion process (ASEP) has been extensively
studied by mathematicians [1] and physicists (see [2] and references therein) as one of
the simplest model of a system out of equilibrium. It is a diffusion model with hard-core
exclusion that can be used to describe hopping conductivity in superionic conductors, traffic
flow, and interface growth; it can be mapped to a lattice version of the Kardar–Parisi–Zhang
equation [3].

Subject to open boundaries, where particles are injected or extracted, the ASEP displays
a rather rich behaviour; it exhibits phase transitions in the thermodynamic limit. The
exact steady state for the fully asymmetric case (particles jump only in one direction) was
computed in [4] for special choices of the input parameters and more generally in [5, 6].
These computations rely on a recursion in the system size. An elegant way to exploit the
recursive property of the steady state is the matrix ansatz used in [5], where the stationary
probabilities are expressed as matrix elements of products of operators, which represent
particles and holes.

The same technique was used in [7] for the partially asymmetric exclusion process
with open boundaries. The operators used here generate a quadratic algebra which is
simply related to the so-called deformed oscillator algebra. The phase diagram was derived
in the thermodynamic limit, and the steady-state current in each phase was computed.
However, since suitable representations of the quadratic algebra were lacking general
equal-time correlation functions, the stationary state could not be calculated. Recently,
Essler and Rittenberg [8] studied Fock representations of the general quadratic algebra (that
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can generically be mapped on the deformed oscillator algebra). They first found infinite-
dimensional matrices, and then gave conditions under which these infinite matrices have an
invariant subspace of finite dimension. These constraints were explicitely written in terms
of the parameters of the partially ASEP in the case of a one- and two-dimensional invariant
subspace. One- and two-dimensional representations were constructed, and correlation
functions were determined with the help of these representations.

In this paper we use standard methods of linear algebra to classify and construct all
irreducible finite-dimensional representations of the deformed harmonic oscillator algebra,
without having to start with infinite-dimensional matrices. We show that there is exactly
one irreducible representation for any finite dimensionn, and we find explicit constraints
on the parameters of the ASEP that make this representation compatible with the boundary
conditions (cf equation (20)). These constraints define the locus of points in the phase
diagram of the exclusion model that are accessible by finite-dimensional representations. In
these regions of the phase diagram we compute the bulk density in thermodynamic limit and
all the correlation lengths. Our results prove some conjectures raised in [8]. Morever, to
the best of our knowledge the finite-dimensional representation presented here has not been
reported before†. The matrices obtained can also be useful in studying algebras associated
with more general reaction–diffusion processes.

This paper is organized as follows. In section 2, we recall the matrix technique, relate it
to the deformed harmonic oscillator algebra, and construct all irreducible finite-dimensional
representations of this algebra. Section 3 is devoted to the calculation of the bulk density
and the correlation lengths in the thermodynamic limit in the regions of the phase space
that are accessible by finite-dimensional representations. The final section concludes with
some remarks on possible generalizations. Some general properties of the quadratic algebra
which are shared by all representations are proved in appendix A; these properties are used
in appendix B to prove the non-triviality of the representations obtained in section 2.

2. Finite-dimensional representations of the quadratic algebra

2.1. Matrix ansatz for the ASEP with open boundaries

We consider the one-dimensional partially asymmetric exclusion process with open boundary
conditions. Each sitei(16 i 6 L) of a one-dimensional lattice ofL sites is either occupied
by a particle(τi = 1) or empty (τi = 0). The system evolves according to a stochastic
dynamical rule: during each infinitesimal time stepdt , the transitions allowed for the bond
(i, i + 1) with 16 i 6 L− 1 are

10→ 01 with rate 1

01→ 10 with ratex.
(1)

The parameterx is positive and measures the strength of the driving field; one can assume
with no restriction thatx < 1. The model studied here is not totally asymmetric, therefore
x > 0. Particles are injected at sites 1 andL with rates(1−x)α and(1−x)δ and extracted
with rates(1− x)γ and (1− x)β respectively, whereα, β, γ and δ are strictly positive
numbers.

† A reason for this fact may be that, as shown in [5], there are no irreducible representations of finite dimension,
strictly greater than 1, of the algebra associated with the totally asymmetric exclusion process, the model mostly
studied.
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It was shown in [5] that the quantitiesf (τ1, . . . , τL) defined as

f (τ1, . . . , τL) =
〈
W |

L∏
i=1

(τiD + (1− τi)E)|V
〉

(2)

provide stationary solutions of the master equation of the ASEP if the operatorsD, E satisfy
the algebra

DE − xED = (1− x)(D + E) (3)

and the vectors〈W | and |V 〉 are such that

(βD − δE)|V 〉 = |V 〉
〈W |(αE − γD) = 〈W |. (4)

The ASEP on a finite lattice has a unique stationary state (Perron–Frobenius theorem, see,
for example [9]). Therefore, all the quantitiesf (τ1, . . . , τL) are proportional to the steady-
state probabilities of the system. If the matrix elements (2) are not all equal to zero, then
the normalized stationary probabilities of the exclusion process are given by:

P(τ1, . . . , τL) = 1

ZL
f (τ1, . . . , τL) with ZL = 〈W |(D + E)L|V 〉. (5)

To compute the stationary probability distribution of a system withL sites, one needs to
find representations of the algebra (3) and boundary vectors (4). These representations must
be such that the matrix elements of lengthL, i.e. of the type

〈W |Dn1Em1 . . . DnkEmk |V 〉 with n1+m1+ · · · + nk +mk = L (6)

do not identically vanish (i.e. are non-trivial). In appendix A, we find general properties, that
a representation must possess to ensure that matrix elements of the type (6) are non-trivial
for a system of lengthL.

In [8], relations (3) and (4) are interpreted as a Fock representation of the quadratic
algebra generated by the operators

A = βD − δE − 1 and B = αE − γD − 1. (7)

MatricesA andB act trivially on the boundary vectors:

A|V 〉 = 0 and 〈W |B = 0. (8)

Thus |V 〉 and 〈W | play the role of right and left vacuum for the operatorsA andB. If
αβ 6= γ δ the operatorsD andE can be expressed as linear combinations ofA andB, which
hence satisfy the quadratic algebra:

(1− x)αγA2+ (αβ − xγ δ)AB + (γ δ − xαβ)BA+ (1− x)δβB2

= (1− x)((αβ − γ δ)(α + γ )− α(β + γ )− γ (α + δ))A
+(1− x)((αβ − γ δ)(β + δ)− δ(β + γ )− β(α + δ))B
+(1− x)((αβ − γ δ)(α + β + γ + δ)− (α + δ)(β + γ )). (9)

Conversely, a Fock representation of a general quadratic algebra can generically be
transformed to a representation of an algebra of type (3) with boundary conditions like
(4).
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2.2. Classification of irreducible representations

We show that then-dimensional irreducible representation of the algebra (3) can be written
in a suitable basis as:

D =


1+ a 0 0 0 . .

0 1+ ax 0 0
0 0 1+ ax2 0

.

.

1+ axn−1

 (10)

and

E =



1+ 1
a

0 0 0 . .

1 1+ 1
ax

0 0
0 1 1+ 1

ax2 0
. .

. .

1 1+ 1
axn−1

 (11)

wherea is a non-zero real parameter.
In order to derive this result, we start by defining two operatorsd ande such that

D = 1+ d and E = 1+ e. (12)

From equation (3), we see thatd and e satisfy the deformed harmonic oscillator algebra
[10, 11]:

de − xed = 1− x. (13)

Using equation (13), we note that ifλ is an eigenvalue of the operatorde, then(
1+ λ− 1

x

)
is an eigenvalue of the operatored (we recall thatx 6= 0). In finite dimension the matrices
de anded have the same spectrum, which contains therefore the numbers:

λ, 1+ λ− 1

x
, 1+ λ− 1

x2
, . . . ,1+ λ− 1

xk
, . . . k ∈ N.

But there is only a finite number of distinct eigenvalues in a finite-dimensional
representation: this implies that eitherx is a root of unity orλ = 1. Only the latter
case is possible here: the eigenvalues ofde must all be equal to 1. The operatorde is
invertible, and so are the matricesd and e (their determinant cannot be zero). We now
rewrite equation (13) as:

d(e − d−1) = x(e − d−1)d. (14)

Hence, our problem is reduced to finding representations of the algebra

DE = xED with D invertible

where

D = d and E = (e − d−1).



Quadratic algebras and exclusion model 4517

If |a〉 is an eigenvector ofD with eigenvaluea (which is different from 0 because
D is invertible), then E |a〉 is an eigenvector ofD with eigenvalue xa or is the
null vector. Consequently, the space spanned by the linearly independent vectors
{|a〉, E |a〉, . . . , Ek|a〉, . . .} is stable under bothD and E . To obtain a finite-dimensional
representation, there must be an integern such thatEn|a〉 = 0. This integern is also the
dimension of the full representation space, since the representation is irreducible.

The proof that the irreduciblen-dimensional representation of the quadra-tic oscillator
algebra is given by (10) and (11), is completed by writing the matrices ofD = 1+d = 1+D
andE = 1+ e = 1+ E +D−1 in the basis(|a〉, E |a〉, . . . , En−1|a〉). (Hereafter, this basis
will be denoted by(|1〉, . . . , |n〉).)

2.3. Boundary vectors and conditions on the rates

We construct the boundary vectors|V 〉 and〈W | associated with the irreducible representation
of dimensionn found above. These boundary vectors are right and left eigenvectors of the
operatorsA andB, defined by equations (7), with zero eigenvalue (see equation (8)). In the
basis(|1〉, . . . , |n〉) matricesA andB are bidiagonal, their eigenvalues are readily obtained.
One can check that forA andB to have 0 as an eigenvalue, there must be two integers,k

and l, between 0 andn− 1 such that:

β(1+ axk)− δ
(

1+ 1

axk

)
− 1= 0

and

α

(
1+ 1

axl

)
− γ (1+ axl)− 1= 0. (15)

Necessarily|l − k| = n − 1, otherwise a representation of dimensions less thann would
suffice. In the casek = n− 1 andl = 0, one has

|V 〉 = |n〉 and 〈W | = 〈1|.
With such a choice, one has〈W |DL|V 〉 = 0 for anyL. This implies, using the definiteness
property (proved in appendix A), that all the quantitiesf (τ1, . . . , τL) are equal to 0: this
case has to be excluded.

The only case that remains isk = 0 andl = n− 1; the two equations corresponding to
(15) are

βa2+ (β − δ − 1)a − δ = 0

α

(
1

axn−1

)2

+ (α − γ − 1)

(
1

axn−1

)
− γ = 0

(16)

and they must have a common roota. Both equations have the same structure, their solutions
can be written asa = κ±(β, δ) and 1

axn−1 = κ±(α, γ ) with

κ±(u, v) = −u+ v + 1±
√
(u− v − 1)2+ 4uv

2u
. (17)

This function already appeared in the study of the phase diagram of the partially asymmetric
exclusion process in [7]. One can check that foru andv positive,

κ+(u, v) > 0 and − 1< κ−(u, v) < 0. (18)
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One also has

κ+(u, v)κ−(u, v) = −v
u
. (19)

Therefore, equations (16) have a common root if and only if

x1−n = κ+(β, δ)κ+(α, γ ). (20)

Condition (20) is an explicit constraint on the parameters of the ASEP. It defines the locus
of points in the phase diagram accessible ton-dimensional representations. Figure 1 shows
the curves (hyperbolae branches) in theκ+(α, γ ) − κ+(β, δ) plane wheren = 1, . . . ,8-
dimensional representations exist. It is worthwhile noticing that equation (20) proves a
conjecture made in [8], which states that finite-dimensional representations exist only in the
region

κ+(β, δ)κ+(α, γ ) > 1.

If condition (20) is fulfilled the common root of (16) reads

a = κ+(β, δ) = 1

xn−1κ+(α, γ )
(21)

and vectors〈W | and|V 〉 exist such that boundary conditions (4) are satisfied. These vectors
can be computed as:

〈W | = (w1, w2, . . . , wn) |V 〉 =


v1

v2

.

.

.

vn

 (22)

with

vk =
k−1∏
m=1

δ

β[1− x−m][axm − κ−(β, δ)] (23)

and

wk =
n−2∏

m=k−1

−1

[1− xm−n+1][(axm)−1− κ−(α, γ )] for k = 1, . . . , n. (24)

With this definition, one hasv1 = 1 andwn = 1.
Hence, we have constructed an explicitn-dimensional representation ((10), (11), (22),

(23) and (24)) of the quadratic algebra with the required boundary conditions, provided
that the ratesα, β, γ and δ satisfy constraint (20). As discussed earlier (section 2.1), we
must verify that the matrix elements of lengthL (6), computed with this representation, do
not identically vanish. In appendix B, using general properties of the algebra derived in
appendix A, we prove that these matrix elements are non-trivial if the sizeL of the system
is larger than the dimensionn of the matrices. ForL < n there are certain choices of
the parameters for which, surprisingly enough, all matrix elements of lengthL vanish. We
identify these choices of the parameters in appendix B. In any case, our representation can
be used to investigate thermodynamic behaviour.
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1

1

C

A

B
0

Figure 1. Phase diagram for the ASEP with 0< x < 1 in terms ofκ+(α, γ ) and κ+(β, δ)
whereκ+(u, v) = 1

2u [−u+v+1±
√
(u− v − 1)2 + 4uv]. The phases are separated by the full

lines. The broken curves are where finite-dimensional representations exist forx = 3
4 , and the

numbers attached to these curves are the dimensions of the corresponding representations.

3. Bulk density and correlations in the thermodynamic limit

In the thermodynamic limit the asymmetric exclusion process exhibits three different phases
in which the current and correlation functions are given by different expressions. An
exhaustive study has been carried out, mainly for the totally asymmetric model [5, 6, 12].
Much less is known about the partially asymmetric exclusion process: the phase diagram
was obtained in [7] from an exact calculation of the current in the thermodynamic limit.
This phase diagram, shown in figure 1, agrees with the mean-field prediction. The bulk
density was computed in [8] in mean-field approximation, and it was argued that the mean-
field result was exact. We recall here the description of the phase diagram together with
some known results.

The phases can be described as follows.
• Phase A (high density):κ+(β, δ) > κ+(α, γ ) andκ+(β, δ) > 1.
In the thermodynamic limit, the currentJA is

JA = (1− x) κ+(β, δ)
[1+ κ+(β, δ)]2

and the mean-field prediction for the density in the bulk is:

ρMF
A =

κ+(β, δ)
1+ κ+(β, δ) .

• Phase B (low density):κ+(α, γ ) > κ+(β, δ) andκ+(α, γ ) > 1.

JB = (1− x) κ+(α, γ )
[1+ κ+(α, γ )]2

ρMF
B =

1

1+ κ+(α, γ ) .
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• Phase C (maximal current):κ+(β, δ) < 1 andκ+(α, γ ) < 1.

JC = 1− x
4

ρMF
C = 1

2.

Phases A and B are separated by a coexistence line, defined byκ+(β, δ) = κ+(α, γ ) > 1,
through which the (mean-field) bulk density is discontinuous. This phenomenon has been
investigated in the totally asymmetric case, and reveals the presence of a shock between a
region of low density and a region of high density [5, 6]. The same phenomenon happens
in the partially asymmetric case, as will be confirmed by our calculation of correlation
functions.

Little is known about general correlation functions of the partially asymmetric exclusion
process. In [8], some correlation functions were computed with one- and two-dimensional
representations, i.e. on curves 1 and 2 in figure 1. We shall now identify the generic structure
of correlation functions for the case wheren-dimensional representations exist. Such an
exact result cannot be obtained from a mean-field analysis [5, 8]. For example a two-point
function is given by:

〈τj τk〉 = 〈W |C
j−1DCk−j−1DCL−k|V 〉
〈W |CL|V 〉 (25)

with

C = D + E. (26)

The positions, on which a correlation function depends, enter the above expression as an
exponent of the matrixC. For this reason we have to compute powers of the matrixC

which is given by:

C = D + E =


λ1 0 0 0 . .

1 λ2 0 0
0 1 λ3 0

. .

. .

1 λn

 (27)

with

λk = 2+ axk−1+ 1

axk−1

= 2+ xk−1κ+(β, δ)+ xn−kκ+(α, γ ). (28)

We have used equations (20) and (21) to derive the last line.
ForL� 1, the dominating matrix elements ofCL will be found in the invariant subspace

of C that corresponds to the largest eigenvalue. We must identify the highest eigenvalue,
and examine whetherC can be diagonalized in the associated invariant space†. We notice
that all the eigenvalues ofC lie on the curvez 7→ 2+ z + 1/z, with z = a, ax, . . . , axn−1.
This implies that the largest eigenvalue ofC can only beλ1, or λn or both of them if it
happens thatλ1 = λn. We have:

λ1− λn = a + 1

a
−
(
axn−1+ 1

axn−1

)
= (1− xn−1)

(
a − 1

axn−1

)
= (1− xn−1)(κ+(β, δ)− κ+(α, γ )). (29)

† We recall that the invariant space associated with the eigenvalueλ is given by
⋃∞
i=0 Ker(C − λ)i .
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There are three different cases to consider, that naturally correspond to different regions in
the phase space.

3.1. Bulk density and correlations in phase A

This phase is defined byκ+(β, δ) > κ+(α, γ ) and κ+(β, δ) > 1, thereforeλ1 > λn. The
leading eigenvalue ofC is λ1 and it is non-degenerate. We write|λ1〉 (and 〈λ1|) for the
corresponding right (and left) eigenvector. One should notice that〈λ1| is equal to〈1|.
Hence, we obtain that for large system sizes:

ZL = 〈W |CL|V 〉 ' 〈W |λ1〉〈λ1|V 〉λL1 . (30)

The bulk density is given by:

ρA = 〈τi〉 = 〈W |C
i−1DCL−i |V 〉
〈W |CL|V 〉 with 1� i � L

' 〈W |λ1〉λi−1
1 〈λ1|D|λ1〉λL−i1 〈λ1|V 〉
〈W |λ1〉〈λ1|V 〉λL1

= 1+ a
λ1

(31)

= κ+(β, δ)
1+ κ+(β, δ) . (32)

Here we used〈λ1|D = 〈λ1|(1+ a) and〈λ1|λ1〉 = 1 to derive the last two lines. This result
agrees with the mean-field prediction, as it was conjectured in [8].

Next we compute〈W |Cj−1DCk−j−1DCL−k|V 〉. The result is a linear combination of
powers of the eigenvalues. Dividing it by the asymptotic expression (30) forZL and using
equation (25) shows that the two-point function is a superposition of terms(λi/λ1)

m, where
m is one of the distancesj, k–j, L–k. Similarly, one can compute higher-order correlation
functions. For a large system, i.e. forL � n, they decay exponentially with correlation
lengths

ξi =
{

ln
λ1

λi

}−1

=
{

ln
2+ xn−1κ+(α, γ )+ κ+(β, δ)

2+ xi−1κ+(β, δ)+ xn−iκ+(α, γ )
}−1

i = 1, . . . , n− 1. (33)

For n = 2 the correlation length computed in [8] is recovered. One should notice that the
correlation lengths depend only on the functionsκ+(β, δ) andκ+(α, γ ).

3.2. Bulk density and correlations in phase B

Phase B, defined byκ+(α, γ ) > κ+(β, δ) andκ+(α, γ ) > 1, is related to phase A by means
of a symmetry: replacingτi by 1− τL+1−i as well asβ by α, δ by γ and vice versa leaves
the dynamics of the system invariant. We find that the bulk density is:

ρB = 1+ axn−1

λn
(34)

= 1

1+ κ+(α, γ ) . (35)
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And the correlation lengths are given by:

ξi =
{

ln
2+ xn−1κ+(β, δ)+ κ+(α, γ )

2+ xi−1κ+(β, δ)+ xn−iκ+(α, γ )
}−1

i = 1, . . . , n− 1. (36)

3.3. Correlation functions on the coexistence line

Phases A and B coexist in a single system on the lineκ+(β, δ) = κ+(α, γ ) > 1. For the
fully asymmetric process it was shown in [5, 6] that the density profile depends linearly
on the position, which indicates that the border between the two phases can be anywhere
with the same probability. The same behaviour was observed in [8] for the case where
two-dimensional representations exist, and two-point correlations functions were found to
depend algebraically on the positions.

Let us discuss the case wheren-dimensional representations exist. The eigenvalues of
C are given by equation (28) which now reads

λk = 2+ [xk−1+ xn−k]κ+(β, δ) (37)

becauseκ+(α, γ ) = κ+(β, δ). Obviously, these eigenvalues pairwise coincide:λk = λn+1−k
for all k, and due to the line under the diagonal (see equation (27))C is not diagonalizable.
However, it can be transformed into a Jordan normal form with a two dimensional Jordan
block for each eigenvalue. This implies algebraic behaviour of the correlation functions (see
the discussion in [13]). We denote by(|λ1〉, |λn〉) a basis of the two-dimensional invariant
space associated with the highest eigenvalueλ = λ1 = λn. In this basis the restriction of
CL can be written as:

λL−1

(
λ 0
L λ

)
. (38)

We choose|λn〉 = |n〉 and 〈λ1| = 〈1|. By decomposing on this normal basis, we find for
large system sizes

ZL = 〈W |CL|V 〉 ' LλL−1 (39)

becausewn = v1 = 1.
Them-point correlation function can now be computed as

〈τx1Lτx2L . . . τxmL〉 =
〈W |Cx1L−x0L−1DCx2L−x1L−1D . . .DCL−xmL|V 〉

〈W |CL|V 〉 (40)

with 0 = x0 < x1 < x2 < · · · < xm < 1. In the limit of large system size, we project on
the (|λ1〉, |λn〉) plane and keep only highest-order terms:

〈τx1Lτx2L . . . τxmL〉

'
m∑
k=1

〈V |Cx1L−1D . . .D|λn〉〈λn|CxkL−xk−1L−1|λ1〉〈λ1|D . . .DCL−xmL|V 〉
LλL−1

'
m∑
k=1

(xk − xk−1)
(1+ axn−1)k−1(1+ a)m−k+1

λm
. (41)

To obtain the last line we used thatD|λn〉 = (1+ axn−1)|λn〉 and 〈λ1|D = 〈λ1|(1+ a).
Using, furthermore, expressions (31) and (34) for the bulk densities in phases A and B we
find:

〈τx1Lτx2L . . . τxmL〉 '
m∑
k=1

(xk − xk−1)ρ
k−1
B ρm−k+1

A . (42)
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Formula (42) clearly shows that on the coexistence line there is a shock between a low-
density phaseρB and a high-density phaseρA. This shock can be anywhere between 1 and
L with the same probability.

4. Conclusion

The finite-dimensional Fock representations of the quadratic algebra, obtained here, allow
us to derive exact results for the partially asymmetric exclusion process on some special
curves of the phase diagram. We believe that the formulae obtained for the correlation
functions are valid throughout phases A and B, but this is a conjecture: in order to prove it,
one would have to use infinite-dimensional representations, that would lead to complicated
calculations. Maybe a kind of ‘analytic continuation argument’ could be used to obtain
results valid on any curve of the formκ+(β, δ)κ+(α, γ ) = x1−n wheren is not necessarily
an integer any more, but we do not know how to do that. An interesting, and related,
question is to understand the intuitive physics behind condition (20): What makes a system,
that can be analysed with finiten× n matrices, different from the others?

The matrices that we have constructed are also useful in the representation theory of
the algebras associated with more general reaction–diffusion processes. In [8] the following
system of algebraic relations is derived for such algebras:

κ1DE + κ2ED = D + E
κ3D

2 = κ4DE + κ5ED

κ6E
2 = κ7DE + κ8ED (43)

where theκj can be computed from the rates of the reaction–diffusion process [8]. The
representations of (43) are a subset of those of the deformed oscillator algebra. An analysis,
similar to those given in section 2.3, would give conditions on the rates for a finite-
dimensional representation of (43) to exist.
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It is a pleasure to thank C Godrèche for many interesting discussions and comments. SS
would like to acknowledge the hospitality of the Service de Physique de l’État Condenśe,
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Appendix A

In this appendix we show, without using any explicit representation, how to compute
recursively expressions of the type

〈W |Dn1Em1 . . . DnkEmk |V 〉 with n1+m1+ · · · + nk +mk = L
that we shall callmatrix elements of lengthL, and investigate conditions under which these
quantities are different from zero. We need the following properties.

Definiteness property. Matrix elements of lengthL are either all strictly positive, or all
strictly negative or all identically equal to zero.

Indeed, matrix elements of lengthL are stationary solution of the master equation of
the ASEP on a open chain withL sites [5]. Therefore, according to the Perron–Frobenius
theorem [9], they are unique up to a multiplicative constant and are all of the same sign.
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Reordering property. The expression

(Dn1Em1 . . . DnkEmk )− xqE
∑k

i=1miD
∑k
j=1 nj

with L = n1 +m1 + · · · + nk +mk andq =∑j6i6k njmi is equal to a linear combination
of products ofL− 1 operatorsD or E with strictly positive coefficients.

One begins with the formula (obtained by induction onm1):

DEm1 = xm1Em1D + (1− x)
(

1− xm1

1− x Em1 +
m1−1∑
k=0

xkEkDEm1−1−k
)

that allows us to transfer a matrixD from the left to the right ofEm1, and proves the
reordering property forDEm1 − xm1Em1D. One concludes then by induction onk andnk.

The reordering property enables us to compute all matrix elements of lengthL if
expressions of the type〈W |ElDL−l|V 〉 with l = 0, . . . , L and all matrix elements of length
L− 1 are known. Hence, one can relate matrix elements of lengthL to matrix elements of
lengthL − 1. This can be achieved starting with the following system which is a simple
consequence of (4):{

α〈W |El+1DL−l−1|V 〉 − γ 〈W |DElDL−l−1|V 〉 = 〈W |ElDL−l−1|V 〉
−δ〈W |ElDL−l−1E|V 〉 + β〈W |ElDL−l|V 〉 = 〈W |ElDL−l−1|V 〉. (A1)

This system is rewritten according to the reordering property:{
α〈W |El+1DL−l−1|V 〉 − xlγ 〈W |ElDL−l|V 〉 =WL−1

−xL−l−1δ〈W |El+1DL−l−1|V 〉 + β〈W |ElDL−l|V 〉 =W ′L−1

(A2)

whereWL−1 andW ′L−1 are positive linear combinations of matrix element of lengthL−1.
We must distinguish two cases:

(i) if αβ−xL−1γ δ 6= 0, thenall expressions of lengthL can be computed from expressions
of lengthL− 1. Furthermore, all matrix elements of lengthL are equal to 0 if and only if
all those of lengthL− 1 are equal to zero.

(ii) If αβ − xL−1γ δ = 0, thenall matrix elements of lengths less than or equal toL− 1
identically vanish. Indeed, the l.h.s. of the equations in (A2) are proportional, therefore one
must have:

0=
∣∣∣∣ α WL−1

−xL−l−1δ W ′L−1

∣∣∣∣ = αW ′L−1+ xL−l−1δWL−1. (A3)

Because of the definiteness property the positive linear combination on the r.h.s. can only
be equal to 0, if all matrix elements of lengthL−1 are equal to 0. For anyn 6 L−2, one
hasαβ − xnγ δ 6= 0, because otherwise this would implyαβ = γ δ = 0 which is impossible
since all the rates are strictly positive. Using case (i), one concludes that all matrix elements
of lengths less than or equal toL− 1 are identically 0.

In conclusion, we have proved the following properties of any representation of algebra
(3) together with boundary conditions (4).

Property A. If there is one matrix element of lengthL different from 0, then all matrix
elements of lengths greater than or equal toL are non-zero.

Property B. Suppose that there is one matrix element of lengths less thanL different from
0, then for expressions of lengths less than or equal toL, one has to consider two cases:
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(i) if for all non-negative integerl, αβ − xlγ δ 6= 0, then all the expressions
〈W |Dn1Em1 . . . DnkEmk |V 〉 are non-zero for any system size.

(ii) If there exists onel such thatαβ − xlγ δ = 0, then all expressions of lengths less
than or equal tol identically vanish but all matrix elements of lengths greater thanl are
non-zero.

Appendix B

We first show, using property A derived in appendix A, that the representations found in
sections 2.2 and 2.3 provide non-trivial weights for systems of lengths greater than or equal
to n. Indeed the matrix elements〈W |Dl|V 〉 for l = 0, . . . , n−1 cannot all vanish, otherwise
one would have:

0= 〈W |Dl|V 〉 =
n∑
i=1

(µi)
lwivi for l = 0, . . . , n− 1 (B1)

whereµi = 1+ axi−1 is the ith eigenvalue ofD. But relations (B1) can be interpreted as
a system ofn equations withn unknowns(wivi). This system is a Van der Monde system,
and as all the eigenvaluesµi are different from each other, the only solution is(wivi) = 0
for i = 1, . . . , n. But this is not the case: as one can see from the explicit formulae ((23)
and (24)), all the components of|V 〉 and〈W | are different from 0. Consequently, the matrix
elements〈W |Dl|V 〉 cannot vanish for alll, i.e. there is anl′ < n such that〈W |Dl′ |V 〉 6= 0.
According to property A, of appendix A, we conclude that representations (10) and (11),
together with the boundary vectors given by (22) and (23) always provide the stationary
probabilities of the partially asymmetric exclusion process for systems of sizes bigger than
n.

Secondly, for systems of sizes strictly less thann, one has to check, according to
property B of appendix A, whetherαβ − xkγ δ can be equal to 0 for some non-negative
integerk. Using (19) and (20), this condition is equivalent to:

xn−1−k = κ−(β, δ)κ−(α, γ ). (B2)

So, if (B2) is never satisfied, then-dimensional representation found above allows us to
compute the stationary weights for any system size. If there is ak0, such that (B2) is true,
then k0 has to be less thann − 2 (because of (18)), and then-dimensional representation
provides non-trivial weights only for systems of sizes bigger than or equal tok0+ 1.
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